Future smartphones may charge faster and last longer thanks to supercapacitor technology

Future smartphones may charge faster and last longer thanks to supercapacitor technology

When I was in high school, I had the best physics teacher in the universe. Patrick Gillespie was genuinely passionate about the subject and often visualized the lesson using contraptions he had built himself. One such DIY apparatus was an enormous capacitor – a plastic 55-gallon barrel layered with aluminum foil on the inside and outside. While crude, Pat's cap could store enough charge to zap any student brave enough to touch the two plates. Ah, the memories!

So basically, that's what a capacitor is – a device that can store and deliver electrical charge. This makes it similar to a battery, which has the very same application. Then why do all smartphones use batteries instead of capacitors? Well, that's one of the questions I'll answer in the paragraphs below. But the main focus of this article is on supercapacitors – a relatively new yet increasingly popular type of charge-storing device – and on why these might one day replace the ubiquitous lithium-ion battery cell.

Batteries vs capacitors: what's the difference?


Batteries come in many shapes, sizes, and types. The ones that all modern cellphones use are rechargeable lithium-ion batteries, which are known for their high energy density. This means they can store a lot of charge in a battery unit that's small and light, which makes them perfect for use in portable electronics.

Unlike batteries, capacitors have the ability to charge and discharge extremely quickly, which makes them great for zapping students in physics class. On the other hand, they store a very tiny amount of charge for their size. If a capacitor with the energy capacity of an iPhone's battery was ever designed, you'd need a van to move it around. These are just a few of the many factors setting batteries and capacitors apart, but they're enough to give you an idea why a common capacitor can't power a smartphone.

This particular battery cell (left) can store 1800 times more energy than the cap next to it

This particular battery cell (left) can store 1800 times more energy than the cap next to it


So what are supercapacitors then?


The properties of existing supercapacitors (also called ultracapacitors) put them somewhere between batteries and regular capacitors. They can store a reasonable amount of charge – still far from what a battery can hold, but a hundred times more than a capacitor of the same size. Also, supercapacitors can be charged much faster than a lithium battery, won't degrade as quickly over time, and have greater tolerance for extreme temperature.

Current supercapacitors can't replace the battery inside a smartphone, but advancements in the field could make that a reality one day. Imagine a smartphone battery that charges in seconds and performs like new even after a decade of use. That would be awesome, no doubt about it.

Supercapacitors come in many different sizes and are used for both commercial and industrial applications. However, these can't yet replace a phone's battery

Supercapacitors come in many different sizes and are used for both commercial and industrial applications. However, these can't yet replace a phone's battery



What's the future of supercapacitors?


One thing's certain: next year's flagships won't be powered by a supercapacitor, as a contemporary supercap of practical size can't hold enough charge. Actually, we could be a decade or more away from the launch of such a phone. But research is being done by a number of institutions with the goal of discovering ways to increase supercapacitors' energy storage abilities. One of the teams working towards the goal is at the University of Central Florida and recently published an article highlighting their progress. And their research results sound optimistic: the team has developed a new process for making supercapacitors with higher energy density. This has been achieved through the use of nanomaterials – conductors 100,000 times thinner than a human hair – for storing and transferring charge. On top of that, UCF's supercaps are flexible and can endure 30,000 recharge cycles without failing.

A supercapacitor developed at the University of Central Florida

A supercapacitor developed at the University of Central Florida



And you know what, it is not impossible for Nitin's predictions to come true. But there's still a number of considerable obstacles researchers in the field have to overcome.

What are the challenges supercapacitor technology is facing?


For starters, safety is an issue that has to be addressed. As I pointed out already, capacitors and supercapacitors can discharge rapidly, and the failure of one could result in sparks that would make the Galaxy Note 7 fiasco look like lighting up candles around the bathtub to set the mood.

Then there's the promise of ultra-fast charging. Technically, charging a supercapacitor in a matter of seconds is possible, but in practice, you'll need a massive power supply to pull this off – a charger the size of a football, perhaps. Or a lightning strike. Charging over the course of several minutes is a lot more realistic of a scenario, but you'd still need a charger the size of a laptop's power supply.

And no less importantly, there's cost. It's going to take a tremendous amount of research and development until a supercapacitor worthy of replacing a smartphone battery becomes feasible. All of that is going to require a lot of money, effort, and time. If they ever become a practical reality, these supercapacitors will be very expensive at first, which would certainly impact the cost of phones that might use them.

But the latter is a challenge every emerging tech has to face, and overcoming it is definitely possible. Back in the old days, only the best phones had a lithium battery, a color screen, and/or a camera. Today, it is hard to find a phone without these. Technology and science know no rest, folks, and an alternative to Li-Ion batteries will surely come. Will it be a next-generation supercap? Only time will tell.

FEATURED VIDEO

22 Comments

1. HugoBarraCyanogenmod

Posts: 1409; Member since: Jul 06, 2014

Charge faster, last longer, explode quicker

4. shaineql

Posts: 520; Member since: Apr 28, 2014

Weekly quota for "new battery tech" news fulfilled.

14. DoggyDangerous

Posts: 1028; Member since: Aug 28, 2015

I hope that it will dabut in 2050.

8. maple_mak

Posts: 953; Member since: Dec 18, 2013

Battery break earlier.

12. piyath

Posts: 2445; Member since: Mar 23, 2012

That's is Samsung!

20. FrenchGuy

Posts: 134; Member since: Dec 12, 2014

Learn proper English please!

13. SmartPhoneMobiles

Posts: 174; Member since: Oct 16, 2016

Explode much more aggressive than battery.. But if capacitors will be flat and stored in some non explosive housing should be safe.. Standard caps are stored in crappy aluminium..can easily pop

2. Arch_Fiend

Posts: 3938; Member since: Oct 03, 2015

Charge in seconds and last for a week, sounds to good to be true but it also sounds amazing. To bad all the new battery tech takes so long to became mass producible and safe to use in devices such as smartphones........THE WAIT CONTINUES.

16. NarutoKage14

Posts: 1297; Member since: Aug 31, 2016

And the wait will continue. Lithium-ion batteries were invented in 1980, it only took 30 years for them to come to consumer market. Any new battery tech we hear about will take at least 20 years to come into the consumer market. Of all the new tech we've heard about the last 5 years one of them is on track to be used in 2030.

21. Arch_Fiend

Posts: 3938; Member since: Oct 03, 2015

I know right bruh, smh. For now we will just have to make do with lithium-ion and advancements in energy efficient components.

23. Leo_MC

Posts: 6391; Member since: Dec 02, 2011

Li-ion batteries were developed in the late 80s and in the 90s there were already inside the phones; very few had them, but they did. Today, it would be even faster to adopt the newest technology with reasonable costs.

3. trojan_horse

Posts: 5868; Member since: May 06, 2016

"and the failure of one could result in sparks that would make the Galaxy Note 7 fiasco look like lighting up candles around the bathtub to set the mood." Not sure if mentioning the Note7 was necessary... It's not like the Note7 is the first ever phone to catch fire.

7. zenun12

Posts: 205; Member since: Oct 31, 2016

He probably can't find any more infamous one than the Note7. Every phone has the chance to explode, but an explosion can happen to a any phone on a "relative basis". Let's say I have an iPhone 7 and a Galaxy S7, The iPhone I charge under my pillow overnight, while the S7 is charged at the living room beside a window. Which one has a bigger chance of explosion? The iPhone obviously since it has lesser room to ventilate and the metal body isn't helping.

17. NarutoKage14

Posts: 1297; Member since: Aug 31, 2016

Chernobyl was basically a gargantuan battery. It blew up and now people can't live in an area the size of a small nation. Please stop using Note 7 and use Chernobyl instead.

10. runzlord

Posts: 245; Member since: Oct 13, 2013

Just as 9/11 was not the first terrorist attack.

18. sissy246

Posts: 6959; Member since: Mar 04, 2015

Yes that should have been worded more like, "and the failure of one could result in sparks from Li-ion batteries look like lighting up candles around the bathtub to set the mood." But then PA wouldn't have their daily jab at the note 7.

5. tacarat

Posts: 851; Member since: Apr 22, 2013

When will phones be powered by vaporware? It's a common substance in tech.

6. cnour

Posts: 2305; Member since: Sep 11, 2014

Note 8 will be a good tester

9. Subie

Posts: 2275; Member since: Aug 01, 2015

Interesting article - thanks Nick T!

11. .KRATOS.

Posts: 440; Member since: Mar 15, 2013

How far this future could be

15. drazwy

Posts: 347; Member since: Jan 15, 2014

Uh. Yeah right.

19. nedimko_wot

Posts: 115; Member since: Oct 01, 2016

until they put fusion powered batterys in smartphones i am not happy

Latest Stories

This copy is for your personal, non-commercial use only. You can order presentation-ready copies for distribution to your colleagues, clients or customers at https://www.parsintl.com/phonearena or use the Reprints & Permissions tool that appears at the bottom of each web page. Visit https://www.parsintl.com/ for samples and additional information.